Third Semester B.E. Degree Examination, Aug./Sept. 2020 Analog Electronics
Time: 3 hrs .
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Derive an expression for $\mathrm{A}_{\mathrm{v}}, \mathrm{Z}_{\mathrm{i}}$ and Z_{0} for CE fixed bias using hybrid equivalent model.
(08 Marks)
b. With a neat circuit explain hybrid $-\pi$ model for a transistor in CE configuration. ($\mathbf{0 8}$ Marks)

OR

2 a. Derive an expression for Z_{i}, Z_{0} and A_{v} for emitter - Follower configuration using r_{e} model.
(08 Marks)
b. For the network shown in Fig Q2(b). Determine :
i) r_{e}
ii) Z_{i}
iii) $Z_{0}\left(r_{0}=\alpha \Omega\right)$
iv) $\mathrm{A}_{\mathrm{V}}\left(\mathrm{r}_{0}=\alpha \Omega\right)$
v) $\mathrm{A}_{\mathrm{i}}\left(\mathrm{r}_{0}=\alpha \Omega\right)$.

(08 Marks)

Module-2

3 a. Derive an expression for Z_{i}, Z_{0} and A_{v} of FET self bias configuration with bypassed R_{s}.
b. Explain the construction and working principle of n-channel depletion type MOSFET and draw the characteristic curves.

OR

4 a. The fixed bias configuration of Fig Q4(a) has an operating point defined by $\mathrm{V}_{\mathrm{GSQ}}=-2 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DQ}}=5.625 \mathrm{~mA}$ with $\mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA}$ and $\mathrm{Y}_{\mathrm{P}}=-8 \mathrm{~V}$. Determine :
i) g_{m}
ii) r_{d}
iii) Z_{i}
iv) Z_{0}
v) A_{v}.

Fig Q4(a)
(08 Marks)
b. Draw the JFET common drain configuration circuit. Derive Z_{i}, Z_{0} and A_{v} using small signal model.
(08 Marks)

Module-3

5 a. The i / p power to a device is $10,000 \mathrm{w}$ at a voltage of 1000 V . The output power is 500 W and the output impedance is 20Ω.
i) Find power gain in db
ii) Find voltage gain in db
iii) Find input impedance.
(06 Marks)
b. Describe Miller's effect and derive an equation for Miller input and output capacitance.
(10 Marks)

OR

6 a. Explain high frequency response of FET amplifier.
(06 Marks)
b. Determine $A_{v}, Z_{i}, A_{v s}, F_{L S}$ for the low frequency response of the BJT amplifier circuit shown in Fig Q6(b). Assume $\mathrm{r}_{0}=\alpha$.

(10 Marks)

Module-4

7 a. Explain with neat circuit diagram the operation of transistor Colpitt's oscillator. (08 Marks)
b. What are the effects of negative feedback in an amplifier? Show how bandwidth of an amplifier increases with negative Feedback.
(08 Marks)

OR

8 a. Mention the types of Feedback connections. Draw their block diagrams indicating i/p and o / p signal.
(08 Marks)
b. With a neat circuit and waveforms, explain the working operation of UJT relaxation oscillator.
(08 Marks)

Module-5

9 a. Explain the operation of class B push pull amplifier and show that maximum conversion η is 78.5%
(10 Marks)
b. The Following distortion readings are available for a power amplifier $D_{2}=0.1, D_{3}=0.02$, $\mathrm{D}_{4}=0.01$ with $\mathrm{I}_{1}=4 \mathrm{~A}, \mathrm{R}_{\mathrm{c}}=8 \Omega$.
i) Calculate the THD
ii) Determine the fundamental power component
iii) Calculate the total power.
(06 Marks)

OR

10 a. Explain series voltage regulator using transistor.
(08 Marks)
b. Explain series Fed class A power amplifier. Show that its maximum conversion η is 25%.
(08 Marks)

